
Resource Oriented Architecture: A New Approach with
REST and Graph Database

Jagadeesh Hanumantegowda BE,MS
Chief Technology Officer, FireFlink Pvt Ltd

IndiQube South Mile, Basavanagudi, Bangalore, Karnatka, India
h.jagadeesh@gmail.com

Abstract — The amount of data that’s being created and stored
on a global level is growing exponentially. Now with Machine-
to-Machine communication and Internet of things, the amount of
data generated and shared across different devices and
applications over the network is huge. The essence of this paper
is to show that Graph Database can be applied in prominent for
capturing and processing data generated in Machine-to-Machine
communication or Internet of things applications, thereby
allowing the system architecture to adhere to Resource Oriented
Architecture and hence supporting the unstructured and semi
structured data to be exposed as resource to other applications in
the distributed environment. Most of these machines generated
data being either unstructured or semi structured, It is highly
impossible to store and process this data in traditional RDBMS
and also it requires efficient real time data collection and faster
execution techniques to meet the most of the real world Machine
to Machine and Internet of Things use cases. Once the data is
collected and stored we need modern techniques to query and
filter in order to cater to different application requirement hence
making it complicated to achieve Resource Oriented Architecture
in a distributed environment when involving unstructured and
semi structured data.

Index Terms—ROA, Big Data, REST, Graph Database

INTRODUCTION
With semi structured and unstructured data becoming more
and more prominent in all applications, middleware
software in n-tier architecture has to take huge load of data
manipulation before being exposed over REST interface.
This data manipulation is straightforward when the data is
stored in traditional RDBMS. This is because we can query
and filter the data at the data base level leaving very little
to middleware. Conventional query techniques are not
readily available due to loosely defined schema of semi
structured data. With XML and JSON becoming new
standard for data exchange there has been an increased
volume of data which needs to be queried. This has resulted
in number of new techniques for storing and processing
queries that result in XML or JSON format.

 The complex nature of the semi structured data
and the corresponding query processing makes query
evaluation very hard. In order to store such data, we can
decompose the data into different nodes and the
relationship between the nodes in a a graph pattern. In
traditional databases relationships are built at query time,
hence resulting in expensive query processing. This should
be replaced by a database which stores relationships also
as a core data component. This will improve the processing
of those already persistent relationships in a more efficient

way. Since the relationships are also persisted, query time
is a constant-time operation.

ROA: A LIGHTWEIGHT APPROACH
From a programming point of view, REST is a lightweight
alternative to Web Services and RPC. Retaining this
simple architectural design while exposing a semi
structured data is a new challenge. Below key components
of a REST architecture should be intact.

• Resources, which are identified by standard URLs.
State and Functionality both are represented using
resources. The URLs imply that the resources
are universally addressable by other parts of the
application or other applications. Resources are the key
element of a true ROA design, and the resource should
contain all the required information about the state of the
object it is representing.

• Hypermedia as the Engine of Application State,
meaning that a single resource should not be very large and
contain too fine-grained details. Whenever relevant, a
resource should contain links to additional information --
just as in web pages. Below is a small example HTTP
response which adhere to Hypermedia as the Engine of
Application State

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: ...
<?xml version="1.0"?>
<account>
<account_number>12345</account_number>
<balance currency="usd">100.00</balance>
<link rel="deposit"

href="http://somebank.org/account/12345/deposit" />
<link rel="withdraw"
href="http://somebank.org/account/12345/withdraw" />
<link rel="transfer"
href="http://somebank.org/account/12345/transfer" />
<link rel="close"
href="http://somebank.org/account/12345/close" />
</account>

The system will be a client-server model, but of course one
component's server can be another component's client the
interaction is stateless (although the servers and resources
can of course be stateful). Each new request should carry
all the information required to complete a request, and must
not rely on previous request with the same client.

Jagadeesh Hanumantegowda/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 16 (1), 2025, 75-77

75

ISSN:0975-9646

Resources should be cacheable whenever possible The
protocol must allow the server to explicitly specify which
resources may be cached, and for how long. Since HTTP is
universally used as the REST protocol, the HTTP cache-
control headers can be used for this purpose. Clients must
adhere to the server's cache specification for each resource.
Additional servers can be used as part of the architecture,
to improve performance and scalability.

GRAPH DATABASE: STOREING SEMI STRUCTURED
DATA

Graph database is designed to model and navigate data,
with extremely high performance with connected nodes
and relationships. Graph database contains connected
entities and relationships. Entities can hold any number of
attributes (key-value-pairs). Nodes can be tagged with
labels representing their different roles. Each label is like a
new table in traditional database. A node as such represents
row and the attributes in the node are analogous to
columns.
Relationships provide relevant connections between two
entities. Each relationship always has a direction, a type,
a start node, and an end node. Like nodes, relationships
can have any attributes. Two nodes can share any number
or type of relationships and they are directed. All
relationships can always be navigated regardless of
direction. There should not be any broken links in graph
database. This is because a relationship always has a start
and end node. Deleting a node without also deleting its
associated relationships is prohibited. And an existing
relationship will never point to a non-existing endpoint.

Figure 1 Graph Database Example

REST API TO GET DATA FROM GRAPH DATBASE

Easiest way to interact with Graph Database is by using
REST endpoints on the data that is being exposed by Graph
Database. This is not possible on the fly. There has to be a
separate wrapper on Graph Database which can act as
persistence service in order to expose data on REST end
points. Graph Database transactional endpoint can execute
db query commands within the scope of a transaction. The
transaction can be kept open across multiple REST
requests, until the client chooses to commit or roll back.
Each REST request can include multiple statements, and

can include statements along with a request to begin or
commit a transaction. REST API also supports
authorization and authentication. When authorization and
authentication is enabled, requests to the REST API must
be authorized using the username and password of a valid
user. All responses from the REST API can be transmitted
as JSON, resulting in better performance and lower
memory overhead on the server side. Relationships are also
direst resources in Graph Database REST API. Each
relationship can be accessed either as a stand-alone or
through the nodes it is attached to. The node intensity is the
number of relationships associated with a node. Graph
database can store the intensity for each node, making this
a useful mechanism to quickly get the number of
relationships a node has. It is also possible to filter intensity
by direction and/or relationship type.

Below request and response shows how REST API can be
used to get all relationships.

REQUEST:
GET http://localhost:port/db/data/node/{nodeid}/relations
hips/all
Accept: application/json; charset=UTF-8

RESPONSE:
[{

"start" : "http://localhost:port/db/data/node/{id1}",
 "data" : { },
"self" : "http://localhost:port/db/data/relationship/{id1}",

 "property" :
"http://localhost:port/db/data/relationship/{id1}/properties
/{key}",
"properties" :
"http://localhost:port/db/data/relationship/{id1}/properties
",
 "type" : "HATES",
 "extensions" : { },
"end" : "http://localhost:port/db/data/node/{id1}",

 "metadata" : {
 "id" : {id1},
 "type" : "HATES"

 },
{

"start" : "http://localhost:port/db/data/node/{id2}",
 "data" : { },
"self" : "http://localhost:port/db/data/relationship/{id2}",

 "property" :
"http://localhost:port/db/data/relationship/{id2}/properties
/{key}",
"properties" :
"http://localhost:port/db/data/relationship/{id2}/properties
",
 "type" : "HATES",
 "extensions" : { },
"end" : "http://localhost:port/db/data/node/{id2}",

 "metadata" : {
 "id" : {id2},
 "type" : "HATES"

 }
]

Jagadeesh Hanumantegowda/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 16 (1), 2025, 75-77

76

Schema is optional in graph database. But is possible to
introduce schema in order to gain performance or modeling
benefits. Graph database also supports indexing. Simple
example request and response to create an index using
REST API is as shown below.

REQUEST:

POST http://localhost:port/db/data/schema/index/label_1
Accept: application/json; charset=UTF-8
Content-Type: application/json

{
"property_keys" : ["property_1"]

}

RESPONSE:

200: OK
Content-Type: application/json; charset=UTF-8

{
 "label" : "label_1",
 "property_keys" : ["property_1"]
}

In Graph Database traversals are performed from a start
node. The traversal is controlled by the URI and the body
sent with the request. In order to decide how the graph
should be traversed, some parameter can be sent in the
request body. To progress to the subsequent page of
traversal results, the client can issue a HTTP GET request
on the paged traversal URI which causes the traversal to
fill the next page. If the queried data is too large to return
over HTTP protocol, index and offset can be still used as
parameter and pagination can be achieved.

CONCLUSION

REST along with Graph Database can significantly change
the design approach of the Resource Oriented Architecture.
This in particular will be very effective when the
underlying resources are derived from semi structured or
unstructured data. Having a persistence service wrapper on
top of Graph Database will allow applications to directly
expose semi and unstructured data in XML or JSON format
to other applications in distributed environment through
REST APIs. Storing semi structured or unstructured data
in Graph Database also has an advantage of having
relationships defined well in advance while storing the data
hence REST API can also expose the relationships.
This approach of having Graph Database in backend and
REST APIs in the north bound with a very generic
persistence service wrapper can make the middleware layer
in an n-tier architecture a pass through layer and bring a
whole new outlook to Resource Oriented Architecture even
when the underlying resources are stored in the Graph
Database from semi structured or unstructured data. Hence
REST along with Graph Database will bring a new

approach to the way Resource Oriented Architecture is
achived.

REFERENCES
[1] Treanor, Jill. Ultra-fast trading blamed for 'flash crash'. The Guardian.

[Online] 8 July 2011.
http://www.guardian.co.uk/business/2011/jul/08/ultra-fast-trading-
blamed-for-flash-crash.

[2] Acuna, Antonio. Linked data for executives: building the business
case. London : British Computer Society, 24 November 2011.

[3] Berners-Lee, Tim. Talks: Tim Berners-Lee on the next web. TED.
[Online] February 2009.
http://www.ted.com/talks/tim_berners_lee_on_the_next_web.html.

[4] Resource description framework. W3C semantic web. [Online] 2
October 2004. http://www.w3.org/RDF/.

[5] Lovinger, Rachel. RDF and OWL: A simple overview of the building
blocks of the semantic web. Slideshare. [Online] December 2007.
http://www.slideshare.net/rlovinger/rdf-and-owl.

[6] Berners-Lee, Tim. Giant Global Graph. Massachusetts Institute of
Technology Decentralised Information Group. [Online] 21
November 2007. http://dig.csail.mit.edu/breadcrumbs/node/215.

[7] Herman, Ivan. Web Ontology Language (OWL). W3C Semantic Web.
[Online] 15 October 2007. http://www.w3.org/2004/OWL/.

[8] W3Schools. RDF Tutorial. W3Schools. [Online]
http://www.w3schools.com/rdf/.

[9] Menday, Roger. A perspective on DaaS. s.l. : Fujitsu Laboratories of
Europe Limited, 4 October 2011.

[10] Cyganiak, Richard and Jentzsch, Anja. Linking Open Data cloud
diagram. [Online] September 2011. http://lod-cloud.net/.

[11] RDF Query Language. Wikipedia. [Online]
http://en.wikipedia.org/wiki/RDF_query_language. [12] About
data.gov.uk. Data.gov.uk. [Online] http://data.gov.uk/about.

[13] Linked data. Data.gov.uk. [Online] http://data.gov.uk/linked-data.
[14] Ralmond, Yves, et al. Case study: use of semantic web technologies

on the BBC web sites. W3C semantic web use cases and case studies.
[Online] January 2010.
http://www.w3.org/2001/sw/sweo/public/UseCases/BBC/.

[15] Mendes, Pablo. About DBpedia. DBpedia. [Online] 8 November
2011. http://dbpedia.org/About.

[16] Wallis, Richard. WikiData - announcing Wikipedia's next bg thing.
Data Liberate. [Online] 7 February 2012.
http://dataliberate.com/2012/02/wikidata-announcing-wikipedias-
next-big-thing/.

[17] Zaino, Jennifer. The power is in the link. semanticweb.com. [Online]
6 January 2012. http://semanticweb.com/the-power-is-in-the-
link_b25765.

[18] Serbu, Jared. Navy struggles to find the way ahead on big data.
Federal News Radio. [Online] 20 February 2012.
http://www.federalnewsradio.com/?nid=412&sid=2754767.

[19] Menday, Roger, et al. Linked IT - the BigGraph Concept. s.l. : Fujitsu
Laboratories of Europe Limited, 2011.

[20] Lohr, Steve. The age of big data. The New York Times. [Online] 11
February 2012. http://www.nytimes.com/2012/02/12/sunday-
review/big-datas-impact-in-the-world.html?_r=1&pagewanted=all.

[21] Patil, DJ. Building data science teams. O'Reilly Radar. [Online] 16
September 2011. http://radar.oreilly.com/2011/09/building-data-
science-teams.html.

[22] Watters, Audrey. Scraping, cleaning, and selling big data. O'Reilly
Radar. [Online] 11 May 2011. http://radar.oreilly.com/2011/05/data-
scraping-infochimps.html.

[23] DeWitt, David J. Big data - what is the big deal? Professional
Association for SQL Server. [Online] 14 October 2011.
http://www.sqlpass.org/summit/2011/Live/LiveStreaming/LiveStrea
mingFriday.aspx.

[24] Rodriquez, Alex. RESTful web services: the basics. IBM
DeveloperWorks. [Online] 6 November 2008.
https://www.ibm.com/developerworks/webservices/library/ws-
restful/.

Jagadeesh Hanumantegowda/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 16 (1), 2025, 75-77

77

http://www.ted.com/talks/tim_berners_lee_on_the_next_web.html
http://www.w3.org/RDF/
http://www.slideshare.net/rlovinger/rdf-and-owl
http://dig.csail.mit.edu/breadcrumbs/node/215
http://www.w3.org/2004/OWL/
http://www.w3schools.com/rdf/
http://lod-cloud.net/
http://data.gov.uk/about
http://data.gov.uk/linked-data
http://www.w3.org/2001/sw/sweo/public/UseCases/BBC/
http://dbpedia.org/About
http://dataliberate.com/2012/02/wikidata-announcing-wikipedias-next-big-thing/
http://dataliberate.com/2012/02/wikidata-announcing-wikipedias-next-big-thing/
http://semanticweb.com/the-power-is-in-the-link_b25765
http://semanticweb.com/the-power-is-in-the-link_b25765
http://www.federalnewsradio.com/?nid=412&sid=2754767
http://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html?_r=1&pagewanted=all
http://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html?_r=1&pagewanted=all
http://radar.oreilly.com/2011/09/building-data-science-teams.html
http://radar.oreilly.com/2011/09/building-data-science-teams.html
http://radar.oreilly.com/2011/05/data-scraping-infochimps.html
http://radar.oreilly.com/2011/05/data-scraping-infochimps.html
http://www.sqlpass.org/summit/2011/Live/LiveStreaming/LiveStreamingFriday.aspx
http://www.sqlpass.org/summit/2011/Live/LiveStreaming/LiveStreamingFriday.aspx

