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Abstract 
Big Data refers to enormous amounts of heterogeneous data from various traditional and new data sources. These data are 
constantly changing. However, due to their great heterogeneity, several architectural approaches have been proposed to 
centrally process and analyze large amounts of data. For data processing, platforms using MapReduce are also designed for 
data centers, which are generally centralized. These platforms generally have a single node to maintain and coordinate 
MapReduce tasks, leading to a single point of failure. All of these architectures have advantages and limitations, especially 
in terms of time and processing mode. In our paper, we propose a decentralized architecture based on a content addressable 
network peer-to-peer protocol using image properties associated with SHA-512 keys to secure the data. First, we evaluated 
the existing Big Data technologies from the perspective of architecture to the use of a data storage model. Then, we presented 
all the conceptual aspects of our architecture, and we ended with the evaluation of a symbolic version developed and deployed 
in a local network. We implemented the MapReduce algorithm to evaluate the RGB architecture for data processing by the 
peer node. Our study showed that a decentralized environment can be created for big data processing via the P2P protocol. 

Keywords: CAN protocol, MapReduce, RGB architecture, Big data storage. 

1. INTRODUCTION
Today, the world population is estimated to be 8 billion, 
and more than 3.4 billion people are connected to the 
internet according to "internet live stats" [1]. For the last 
twenty years, the amount of generated data has been 
increasing rapidly. We produce annually very important 
data estimated at nearly 3 trillion (3.1018) bytes of data. It 
is estimated that in 2016, 90% of the world’s data were 
created in the previous two years. It is in this context that 
the term “big data” appeared[2]. The term “big data” refers 
to databases that are too large and complex to study with 
traditional statistical methods and, by extension, to all the 
new tools for analyzing these data. In this article, we focus 
on the collection, storage and processing of massive 
amounts of data in a P2P network context using the CAN 
protocol. 
Big data architectures such as lambda[3] or kappa use 
datalakes or smart data for batch or streaming processing. 
The MapReduce(4) computing model is also much better 
suited to deployment in data centers with highly centralized 
architectures. 
Although omnipresent in our current events, massive 
amounts of data and artificial intelligence are new 
phenomena and are sometimes difficult to define[2]. Big 
data is therefore a new discipline that brings together 
techniques for managing and capturing data and tools and 
platforms for storing, preprocessing, processing and 
securing data. The fastest growing data type is unstructured 
data. This type of data is characterized by human 
information such as high-definition videos, movies, 

photos, scientific simulations, financial transactions, phone 
records, genomic datasets, seismic images, geospatial data, 
maps, email, tweets, Facebook data, call center 
conversations, cell phone calls, website clicks, documents, 
sensor data, telemetry, medical records and images, 
weather data records, log files and text. In the first part of 
this article, we presented related work on big data 
technologies from storage to processing. In the second part, 
we recalled the operating principle of the CAN peer-to-
peer protocol. In the third part, we propose, implement and 
evaluate an architecture for storage and big data processing 
with MapReduce based on a CAN P2P network protocol 
[7]. 

2. RELATED WORK
Big data storage 
Big Data storage is generally based on an architecture that 
allows calculations to be performed and large amounts of 
data to be managed. In most cases, Big Data storage uses 
low-cost hard disks [5]. In big data, the data are mostly 
unstructured, which means that the storage is primarily 
file- and object-based. Although a specific volume or 
capacity is not formally defined, Big Data storage 
generally refers to volumes that grow exponentially on the 
terabyte or petabyte scale [6]. In addition, there are three 
storage methods: file storage, block storage and object 
storage. Object storage is the most widely used data storage 
method in the Cloud. It is a nonhierarchical storage method 
generally used for cloud storage[7]. It consists of storing 
data in the form of units called objects. Each object consists 
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of the data, a unique identifier and metadata. The unique 
identifier corresponds to the access path of the data. Block 
storage consists of dividing a file into several blocks of data 
and then storing them separately. This makes it possible to 
distribute the blocks within the storage system in a more 
efficient way. To retrieve a file, the system reassembles the 
blocks of the file[7]. Most of these storage infrastructures 
support Hadoop and NoSQL storage solutions. In file 
storage, the data are stored in a file unit and placed in a 
folder. It is a hierarchical storage method(8). 
 
Big data storage models 
The advent of big data(6) has also given birth to a series of 
technologies in data storage, including Not Only SQL 
(NoSQL)(9). NoSQL is a technology that was developed 
to solve the problems presented by relational databases. 
This technology (NoSQL) is implemented in different 
ways and has different models. The common 
characteristics of these models include efficient storage, 
low operational costs, high availability, high concurrency, 
minimal management, high scalability and low latency. In 
2019, Khan, Samiya, and Liu conducted a qualitative study 
to rank NoSQL solutions based on several criteria (10). 
Rinkle Rani and other researchers(11) have provided a 
detailed classification of NoSQL solutions by dividing 
them into nine categories: columnar storage, document 
storage, object databases, columnar storage, data structure 
server, key-value storage, cached key-value storage, 
ordered key-value storage and finally coherent key-value 
storage. Cloud solutions can be classified into six 
categories: entity-attribute and value data storage, Amazon 
Platform columnar storage, key-value storage and 
document storage with a distributed hash table(11). 
 
Key-Value Storage Model 
In this section, we are interested in the NoSQL database 
type with a key-value storage, which implements a 
schema-less storage policy. The structure is formally 
defined for data storage. The data can be strings, numbers, 
images, binaries, XML, JSON, HTML or video format, in 
addition to many others. The stored values can be accessed 
by using a key. The flexibility of the database manifests by 
having the application completely control the value of the 
data[12]. The main advantages of key-value storage are as 
follows: 
• The database does not force the application to structure 

its data in a specific form. Therefore, the application is 
free to model its data according to the requirements of 
the use case. 

• Access to the objects occurs simply through the key 
assigned to the object. When using this database, it is 
not necessary to perform operations such as union, join 
and lock on the objects, which makes this data model 
more efficient and highly effective. 

• Most of the available key-value databases allow you to 
adapt according to the demand. 

• These databases are designed such that they are easy to 
add and remove. In addition, these databases are better 
equipped to handle network and hardware failures, 
which greatly reduces downtime. 

CAN Protocol 
The content addressable network (CAN)[13 protocol is a 
peer-to-peer network protocol in which distributed hash 
tables (DHTs) are used. The CAN design described is 
based on a virtual Cartesian coordinate space (Figure 2). 
This coordinate space is completely logical and has no 
relation to any physical coordinate system. The coordinate 
space is shared dynamically among all the nodes in the 
system so that each node has its own individual distinct 
area in the space. 

 
Figure 1: CAN coordinate space [14] 

 
In the space managed by the CAN protocol, each portion 
of the space can be adopted by a node, and each node 
acquires information about its directly connected 
neighbors. The routing in the CAN is performed from close 
to close by passing through all the neighbors until arriving 
at the target peer. To make a hop, the node receiving the 
request communicates it to the neighbor whose coordinates 
overlap on d-1 dimensions and are contiguous on the 
remaining dimension. At each hop, one can change 
coordinates in only one dimension[14]. This virtual 
coordinate space is used to store (key, value) pairs. To store 
a pair of information (key, Value), the key is determined in 
a deterministic way on a point P in the coordinate space 
using a uniform hash function. The corresponding pair 
(key, value) is then stored on the node that owns the field. 
To retrieve an entry corresponding to a key, any node can 
apply the same deterministic hash function to map the 
given key onto the point P and retrieve the corresponding 
value. If the point is not owned by the requesting node or 
its immediate neighbors, the request must be routed 
through the CAN infrastructure until it reaches the node in 
the area where the information peer is located. Efficient 
routing is therefore a critical aspect of the CAN protocol. 
The nodes in the CAN automatically organize themselves 
into an overlay network that represents this virtual 
coordinate space. A node learns and maintains the 
addresses of nodes that contain coordinate areas adjacent 
to its own area. This set of nearest neighbors in the 
coordinate space serves as a coordinate routing table[14]. 
Our comparative study[15] performed using the simple 
network layer in the PeerFactSim simulator showed a 
discrepancy between the theoretical values and the values 
from the simulation in terms of routing. The number of 
hops was greater than the number estimated theoretically. 
For a space divided into n equal areas, the average routing 
path length is O(d/4) (n 1/d), with hops and individual 
nodes maintaining 2d neighbors. These scaling results 
mean that for a d-dimensional space, we can increase the 
number of nodes (and thus the areas) without increasing the 
state of the nodes[14]. However, the average path length 
increases and can tend to O(n 1/d). 
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Our comparative study[15] allowed us to analyze 
initialized messages and correctly transmitted messages to 
determine the average number of failed messages as a 
function of time. 
The study showed that the CAN protocol sends more 
messages. However, this number decreases slightly with 
time, and the number of failed messages is low. The 
number of messages sent by Pastry increases with time, and 
the number of failed messages increases proportionally 
with the number of messages sent. Chord sends fewer 
messages and does not fail. We concluded that the CAN 
protocol has a longer routing time than the other protocols 
but ensures that a very large number of messages are 
successfully sent. This analysis oriented our choice to the 
CAN protocol for the implementation of a self-managing 
and scalable Big Data architecture. 
 

3 PROBLEMATIC 
Currently, the demand for storage solutions is increasing 
due to the challenges of managing data for connected 
devices, sharing data and customizing applications. There 
has been a shift toward data-intensive applications, 
especially because of the dependence of companies on 
large amounts of data. However, these data are stored in 
centralized data centers, which leads to multiple security 
problems and problems with the architecture of the storage 
environment. This argument supports the use of 
decentralized storage solutions. This argument supports the 
use of decentralized storage solutions. We also have cloud 
storage solutions that have a centralized architecture and 
are therefore easy to target for hackers. A decentralized 
system is devoid of such problems since the nodes are 
geographically distant and physically 
independent. Therefore, a failure or attack at a point of 
failure should only affect the affected node. The overall 
system will remain unchanged, as the other nodes will 
continue to operate as usual. In addition to ensuring that the 
system is reliable and available, decentralization also 
contributes to system scalability and performance. 
However, massive data distribution in a decentralized 
environment presents significant challenges, especially in 
terms of access time when the nodes that compose it are 
operating beyond their capacity. In this research, we 
propose a decentralized architecture for scalable, highly 
available and securely stored massive amounts of data. Its 
particularity lies in the use of distributed hash tables 
(DHTs) in the peer-to-peer protocol Content Adressable 
Network (CAN) and the use of image properties coupled 
with the SHA-512 key to secure the data. 
 

4. CONTRIBUTION 
Big Data architecture based on the CAN Protocol 
The purpose of Big Data architecture is not only to store 
data but also to make it available for other applications to 
exploit and extract value from it. It must be possible to 
perform customized analyses on these data in an easy way. 
Therefore, the time needed to access the data is crucial. A 
big data architecture is also an organization of a set of 
technologies allowing us to collect and exploit the data. 
These technologies define the environment of the 

architecture. The main objective of this architecture 
proposal is to ensure a minimum of security both at the 
level of the data in transit and at the level of the various 
components. In this paper, we propose a massive data 
storage architecture based on the P2P CAN protocol to 
improve access time and facilitate access to data. In this 
architecture, we also add an additional layer of security by 
using SHA-512 keys (512 bits) and image properties. This 
architecture is called the RGB architecture. A comparative 
study(15) on the P2P protocols CAN, Pastry, Chord and 
Kademlia showed us that the CAN protocol is effective at 
delivering messages compared to the other protocol. The 
successful delivery of messages implies a rate of success 
of storage requests compared to those of Chord and Pastry. 
These results show that CAN could guarantee a very low 
failure rate in the storage of big data objects. 
 
RGB Architecture 
As shown in the image (Figure 2), our model has one main 
node and three secondary nodes. The main node is called 
the bootstrap node, and the other three nodes are called 
bootstrap secondary nodes. The initialization of the 
architecture is performed by the BootStrap node, which 
assigns a label and an address to each secondary node. 
These labels are R, V, and B. Each label is associated with 
a secondary node. The secondary nodes can in turn 
initialize other nodes called data nodes. Our architecture is 
a key-value-oriented Big Data storage solution that takes 
advantage of the CAN protocol properties for node 
management. 

 
Fig 2:Big data Architecture based on CAN protocol 

 

 
Fig 3: Basic UML diagram class for the RVB 

Architecture 
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Operating principle 
4.3.1 The storage of Big Data objects 
For the majority of the numerical applications consisting of 
representative images on a screen, the trichromic basis of 
additive synthesis RGB (red green blue) is used (screens 
with cathode ray tubes or electroluminescent 
diodes use these three primary colors to synthesize visible 
colors by the man)[16]. Each color is then represented by a 
triplet of real in £ 0; 1¤ (the triplet (1, 1, 1) is the white 
color and (0, 0, 0) the black color). The quasitotality of the 
formats of images makes it possible to manage images in 
base RGB where each component is generally coded on 8 
bits (24 bits for a pixel); thus, this system of coding will be 
used to identify and make an object big data. Each big data 
object in this architecture will have a Globally Unique 
Identifier (GUID) based on a 512-bit SHA3 key. This 
means that each object (file, unstructured data, etc.) is 
associated with a 512-bit SHA key. For storage, the process 
is described as follows: 
• Step 1: First, generate a virtual unique point in the CAN 
space via the CAN hash function. This virtual and unique 
point will be associated with an object to be stored. 
• Step 2: The encryption function SHA-512 is used to 
encrypt the unique virtual points associated with the object 
whose result is a 512-bit key also associated with the 
object. 
• Step 3: The generated 512-bit key is split into eight (08) 
subkeys, each composed of 64 bits. 
Let ∀x ∈ O ID = (X1,X2,X3,X4,X5,X6,X7,X8). 
• Step 4: Each subkey of the previous step is broken down 
into 24 bits and 40 bits. The first 24 bits define the color 
(or value) of a virtual image pixel. The remaining 40 bits 
are split into two parts of 20 bits each, and the X and Y 
decimal coordinates of the image pixel are represented in 
Euclidean space. 
• Step 5: To determine the group of servers in which the 
object will be stored, a calculation is carried out to find the 
higher value of SUP(R,G,B) associated with each of the 
subkeys to select the server on which to store the 
information. For example, if we have SUPxi(R,V,B) = B, 
storage will occur on server B. Xi is a subkey. We will have 
a cluster of servers categorized into R, G, and B. Given that 
the identifier of an object (the key SHA-512) is split into 
eight (08) subkeys, we will have eight (08) redundancies in 
all three clusters of the data server. This set of servers 
constituted the Data Lake in our architecture. 
• Step 6: The object identification information is added to 
the DHT CAN. A pseudocode of this approach is presented 
in Algorithm 1. This technique ensures that the data are 
distributed to all nodes or clusters. Objects sent to the R or 
G server cluster will be replicated to the data nodes (peer 
of data). Algorithm 1 is a pseudo code for the procedure 
described. 
 

Algorithm 1: Pseudo-code 
Initialize  
Compute  
Require: OID,CANDHT,File,Pv ,P,Statut  
Ensure: SubKeys, STORE , REPLICATE, Pv,Target 
Server  

BEGIN OID ← hascode(x, y)  
|       objetKey ← SH A −512(O ID) 
|       tmp ← lengthe Of (OID)  
|        if  (tmp = 64 octets) 
|         |     then P ← 1 for P > 0 and P < 64  
|         |    SubKeys ← 8 octets  
|         |     Pv ← 5 octects  
|         |     TargetServer ← SUP(3octets)  
|         |     CANDHT ← (SubKey,FileName)  
|         |     BootstrapNode ← STORE(File)  
|         |   BootstrapSecondaryNode ← REPLICATE(File)  
|         |    P ← P +1  
|         |    STATUS ← 1  
|      else  
|         STATUS← 0  
|       end if  
END 
  

 
Node dynamics 
In the RGB architecture, nodes are managed using the 
CAN protocol. The primary bootstrap node initializes the 
secondary nodes by assigning them logical addresses. The 
secondary bootstrap nodes manage the data peers. It is 
therefore responsible for adding or removing data peers. It 
also has a routing table for the nodes for which it is 
responsible and is informed of the status of the primary 
node. The primary bootstrap node is used to perform 
storage calculations and maintain the state of the secondary 
nodes. When a secondary bootstrap node fails, storage is 
performed on the secondary node with the closest value 
(according to the SUP(R,G,B) calculation) to the failing 
node. When the primary node fails, the first secondary 
node becomes the primary bootstrap node until the true 
primary node is restored. This dynamic architecture makes 
it a self-managed, high-availability architecture. As the 
storage mode is key-value oriented, it is possible to 
parallelize or independently process the execution of 
search requests on secondary nodes. 
 

 
Figure 4: Data nodes in the RGB Architecture 
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Securing and verifying the integrity of the stored data 
 

 
Figure 5: Virtual space of keys 

 
In our model, we have oriented the security at two levels. 
The use of the SHA3 key applied to the unique identifier 
generated by the CAN hash function allows for double 
verification of the object identifier. Indeed, each unique 
CAN identifier is associated with a set of image points 
(pixels). Let Pu be the unique point of the CAN and SHA3 
be the encryption function; the following formula verifies 
the object identifier: 

𝑆𝐻𝐴3(𝑃𝑢) =,(P′!)	
"

!#$

 

P ′ I represents the position of the image points (pixel). 
 
In addition, protecting data through encryption, 
tokenization and masking are complex and time-
consuming processes. This new architectural approach 
directly integrates data-centric security through the use of 
secureData Format Preserving Encryption (FPE), which 
combines both encryption and data masking 
technology[17]. This is the second level of security. This 
technique can greatly simplify data confidentiality while 
mitigating data leakage. This technology allows local 
encryption of our Data Lake without significant impacts 
from IT. SecureData protects sensitive data from the 
moment they are acquired and ensures that theyare always 
used, transferred and stored in a protected form[17]. 
 

 
Figure 6: Mode of operation of FPE technology 

 
5 IMPLEMENTATION AND SIMULATION 

In this research, we developed the entire module of the 
proposed architecture based on the CAN protocol[14]. We 
subsequently integrated this module into a functional CAN 

P2P protocol version. It is a module programmed entirely 
in JAVA language using APIs to manipulate files, SHA3 
keys, hash tables, and networks. This implementation is 
accessible and available on GitHub[18]. For the 
simulation, we configured a local network with a speed of 
100 Mbs. The client peers (or sources of data), which are 
the client programs in our case, are executed on a computer 
with a capacity of 4 Go Ram and a processor of 2 GHz. A 
computer with a capacity of 32 GB of RAM (Ram), 2.6 
GHz as the processor speed, and an SSD disk was used to 
deploy the server program (primary bootstrap node). We 
also configured three virtual computers serving as 
secondary bootstrap nodes. The simulation was carried out 
over several hours according to the chosen metrics. In this 
simulation, we perform several storage operations 
(LOOKUP) and search operations (STORE) by gradually 
increasing the number of queries and data sources. The idea 
is to determine the average time of the storage and search 
operations and to evaluate the influence of the generation 
of subkeys on the search for data in large volumes of data. 
For the calculation of the means, we realize ten [10] 
repetitive simulations with fixed parameters. To find the 
mean, we apply the following operation: 
Let x1,x2,x3. . ..,x10 the means obtained for each simulation 
and Y the mean to be calculated. Y = (x1,x2,x3. . ...,x10)/10 
 

6 RESULTS ANALYSIS 
Evaluation of the average number of Store requests 
according to the size of the files 
 
To evaluate the average time of STORE requests, we 
decided to vary the size of the files. The tool fsutil of 
Windows allowed us to create files of different sizes. The 
size of the files varies from 1 Mo to 1024 Mo soit 1 Go. 
The size of a file represents the size of the flow entering 
the system, not the size of the data warehouse. 
On the graph (Figure 8), we have curves that show the 
evolution of the average times according to the size of the 
files. For files from 1 to 32 Mb, the latency of the STORE 
requests remains almost the same. However, the results 
show that the storage time increases with the file size. For 
files ranging from 64 MB to 1024 MB, the runtime 
increases slightly with the number of STORE requests. 
Indeed, for each file, 10 000 STORE requests are sent to 
the server Primary BootStrap Node simultaneously by 10 
data sources or peers. These averages were therefore 
calculated progressively. For 1000 requests, then 2000 
requests, then for 3000. This approach allows us to 
evaluate the latency times according to the number of 
requests. For a data file of 64 MB and 128 MB, the latency 
times remain almost constant. There are 10.49 seconds and 
31.17 seconds between 1000 and 10000 requests, 
respectively. The average time for the 256 MB file is 50 
seconds, whereas it is 75.23 seconds for a 512 MB file. We 
have 147.44 seconds as the latency time for a 1024 MB file 
(1 GB). The curve (Fig. 7) shows that there is a corollary 
between the latency times and the file sizes. The latency of 
STORE requests is a function of the file size. 
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Figure 7: Latency according to the number of requests 

 
Figure 8: Latency times and file sizes 

 
Evaluation of failure and success rates 
As with any computer process, there are often failures in 
the execution of tasks. In this experiment, we evaluated the 
failure rate TE for 10000 STORE requests sent. Figure 9 
shows that the failure rate is low. The failure rate was 
calculated with the following formula: 
 

𝑇𝐸	 =
𝑄𝑒
𝑄𝑟	 

 
Qe is the number of failed requests, and Qr is the number 
of successful requests. In our experiment, failures occurred 
from 8000 queries, for a rate of 0.06% or 99.94% success. 
For 9000 requests, the failure rate is 1.9%, or the success 
rate is 98.1%. For 10000 requests 
 
The success rate was 97.67%, or the failure rate was 2.33%. 
An analysis of our architecture allowed us to identify the 
reason for these failures. This is due to the transfer of files. 
The key generation and identifier assignment processes are 
successfully executed. However, the possibility that a 
failure could occur during the first 8000 requests cannot be 
excluded. Moreover, the failure in our case does not 
necessarily mean an absence of the file on all the storage 
clusters because our approach implies eight redundancies, 
all independent, during storage. 
 

 
Figure 9: Failure and success rates 

 
Evaluation of the average number of LOOKUP 
requests 
Currently, one of the crucial points in Big Data architecture 
is latency in the search for information. Even when the 
functions of MapReduce are applied to the data, their 
efficiency depends on the time needed to access the data to 
be treated. One of the objectives of our architecture is to 
reduce the access time to the data by multiplying the access 
keys to the data using the DHT CAN. This section shows 
the evaluation of the results of our architecture. The search 
operations are called LOOKUP. For this experiment, we 
first performed 1000 STORE queries. These STORE 
requests generate 1000*8 keys in the hash table that can 
identify the 1000 stored objects. Then, we performed 10 
LOOKUP experiments. Each LOOKUP experiment 
(lookup 1, lookup 2, etc.) recorded in the table above 
corresponds to 1000 LOOKUP requests sent to search for 
the 1000 objects stored on all three clusters of servers 
R,V,B. Additionally, for each lookup experiment (from 1 
to 10), the data were not initialized. That is, the STORE 
operation was not resumed. This implies that 10000 
LOOKUP requests were sent in total during this 
experiment. The curve in the figure (FIG. 8) shows the 
evolution of the average time taken by the LOOKUP 
requests (T ML). The smallest LOOKUP latency was 
observed during the first lookup experiment. It is 2.9 ms 
(6illisecond). The largest value is observed during the third 
experiment. It is 5.7 ms. The average time decreases 
progressively to reach the average value of 4.9 ms before 
starting again at 5.5 ms during the last experiment. The 
spike observed during the third 
phase of the experiment could be explained by memory 
leakage. The calculated median gives us an average 
LOOKUP time of 5.5 ms. In the figure (FIG: 9), we have a 
graphic representation of the success rate and the failure 
rate. We notice a very low failure rate. The failure rate 
varies between 0.1% and 0.2%, against a success rate that 
varies between 99.98% and 100%. 
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Figure 10: Evolution of the average time taken by the 

LOOKUP requests 
 

 
Figure 11: Rate of success of LOOKUP operations 

 
5. MapReduce and the RGB Architecture 
Popular platforms for MapReduce, such as Hadoop(19), 
are extremely powerful but have certain inherent 
limitations. These platforms are designed to be deployed in 
a data center. Their architecture relies on several nodes 
with specific roles to coordinate work, such as the 
NameNode and JobTracker. These nodes perform 
scheduling and distribution tasks and contribute to the fault 
tolerance of the network as a whole; however, in doing so, 
they themselves become single points of failure. Our 
MapReduce implementation on the RGB Architecture 
provides a dynamic framework for MapReduce and is 
capable of running on any arbitrarily distributed 
configuration. Our framework exploits the characteristics 
of CAN[14] distributed hash tables coupled with our color-
coded computing approach to manage distributed file 
storage, fault tolerance and data retrieval. 
Our approach to implementing MapReduce has been to 
develop modules as extensions to the CAN protocol, taking 
advantage of existing functionality. By treating each task 
as a data object, we can distribute them in the same way as 
files, relying on the protocol to route them and ensure their 
robustness. 
 

 
Figure 12: Basic architecture of nodes in the RGB 

architecture 
 
To evaluate the performance of our MapReduce 
implementation, we chose to deploy it on a local network. 
This implementation was entirely realized in Java using the 
java.net, File, and Stream API and regular expressions. Our 
implementation implements all the routing and 
maintenance procedures defined by the CAN protocol, 
which is used to implement the RGB architecture. The 
machines used were configured on the Windows file 
system. Our implementation is therefore able to easily 
manipulate (create, read and write) files. To start the 
experiment, MapReduce commands and job descriptions 
are sent to the primary bootstrap node, which performs a 
file search operation before the commands are transferred 
to one of the secondary nodes. We tested our computing 
system by running a word frequency count. The tasks were 
tested in several configurations; we varied the initial 
network size and the size of the jobs. Each map job is 
defined by the number of nodes that must execute it, and a 
result that constitutes an input for the "Shuffle" process is 
produced. Reducing these results involves adding up the 
respective fields. Our experiment counts the occurrence of 
each word in a file stored on the RGB architecture. 
 
Results 
In the test context, we evaluated the latency of MapReduce 
requests. We chose a file with a fixed size of 120 MB. This 
file contains a set of words. The Map and Reduce tasks 
consist of counting certain keywords that we specified as 
arguments at the start of the program launch. First, we 
carried out an initial test to ensure that all the steps would 
run successfully. To do this, we configured the RGB 
architecture and the nodes on a single machine with 32 GB 
RAM capacity and an SSD disk. The addresses of the 
computing peers and secondary nodes are managed using 
.txt files. We ran the same job several times, varying the 
number of nodes from 1 to 10. 
 

Lacine Kabre et al/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 15 (5), 2024, 31-39

37



 
Figure 13: Job execution time as a function of nodes 

 
Figure 10 shows the evolution of the calculation times for 
the same case. We obtained an average value of 1214 
milliseconds, i.e., approximately 1.3 seconds for one node 
and an average value of 361 milliseconds for 10 nodes. The 
greater the number of nodes is, the longer the execution 
time. This implies that the processes of dividing files into 
blocks, distributing these blocks, counting and sorting are 
successfully completed. 
 

 
Figure 14: Processing time as a function of the number 

of computing nodes 
 
Fig. 14 shows the results of the experimenting with 
MapReduce on the RGB architecture. For the 100 jobs, we 
have 429.4 seconds for 1 node versus 22.10 seconds for 20 
nodes. For 500 jobs, we have 4322 seconds for 1 node 
versus 1400 seconds for 20 nodes. For this experiment, we 
observe a progressive decrease in processing time, as 
shown in Figure 14. We can therefore deduce an 
acceleration factor by calculating (T1/Tn). This yields 
19.41 for 100 jobs and 3.08 for 500 jobs. Note that the 
greater the number of jobs is, the longer the computation 

time, but the shorter the computation time if several nodes 
are assigned to the jobs. 
The graphs (Fig. 15) show the evolution of computation 
times for jobs between 1 and 20 compute nodes. This 
estimate is based on a proportional calculation and the data 
collected in the previous analyses. 
The curves all have the same shape, showing an 
improvement in calculation time despite the large number 
of jobs submitted. 
 

 
Figure 15: Estimating execution time as a function of 

nodes 
 
Figure 16 shows a theoretical estimate of the execution 
speed as a function of the number of nodes. Based on 500 
jobs submitted, for 100 nodes, we have an execution speed 
66.42 times the execution speed of a node loaded with the 
same number of jobs. At 10000 nodes, the speed can reach 
97.92 times the speed of a loaded node. 
 

 
Figure 16: Job execution speed by node 

 
In the following table, we provide a comparison of certain 
architectures, including the RGB architecture, based on the 
study of [20]. 

 
Features Lamda Zeta kappa RVB 

Data type Reference data 
or metadata transactional data transactional data Reference data or 

metadata 

Frequency of Data Feeds in real-
time Feeds on demand Feeds on demand Feeds on demand 

Content Format 
structured, 

Semistructured, 
unstructured 

structured, 
Semistructured, 

unstructured 

structured, Semistructured, 
unstructured 

structured,Semi, 
unstructured 

Data Source Man made, by 
computers web, Internal source Man made, computers, web Man made Internal source 

Figure 17: Comparison table 
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7. CONCLUSION 
Today, in the world of big data storage, centralized storage 
is becoming obsolete in favor of decentralized storage. 
Moreover, decentralized storage with blockchain has been 
identified as the future of Big Data technology. In this 
paper, we propose a big data architecture called the RGB 
architecture based on the P2P CAN network protocol 
whose storage is an oriented key value. CAN is 
traditionally a P2P protocol for file distribution and 
sharing. We implemented a fully functional version of the 
RGB architecture and performed detailed experiments to 
test its performance. These experiments have shown that 
our architecture is robust and dynamic and is able to 
support the storage of large volumes of data. The use of the 
CAN protocol as middleware allows us to exploit its 
efficiency for message sending and data distribution. The 
efficiency of the CAN protocol helps to improve the data 
storage processes and to guarantee the scalability of a 
dataLake. This architectural approach allows us to 
construct a secure collection and storage system with 
dynamic processing nodes. Thus, the great advantage of 
this approach is that it can guarantee low data loss during a 
collection operation because these secondary nodes can 
replace the central node without taking too much time. We 
also implemented a fully functional version of MapReduce 
on the RGB architecture and carried out detailed 
experiments to test its performance. These experiments 
confirmed that the architecture is robust and efficient. P2P 
network protocols are traditionally known for file sharing. 
We have demonstrated that this approach can also be used 
to construct a data pipeline and perform distributed 
computations on large volumes of data. 
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