
Big data storage and processing with a peer-to-peer Content
Addressable Network Protocol

Lacine KABRE1* and Tiendrebeogo Telesphore2†

1*Exact and applied science, Joseph Ki-Zerbo,
03 BP 7021 Ouagadougou 03, Ouagadougou, 7021, Burkina Faso.

Email: contact@ujkz.bf

2Exact and Applied Science,
Nagzi Institute University, Bododioulasso, Burkina Faso.

info@u-naziboni.bf,

*Corresponding author(s). E-mail(s): lacinekabre1@gmail.com

Contributing authors: tetiendreb@gmail.com

†These authors contributed equally to this work.

Abstract
Big Data refers to enormous amounts of heterogeneous data from various traditional and new data sources. These data are
constantly changing. However, due to their great heterogeneity, several architectural approaches have been proposed to
centrally process and analyze large amounts of data. For data processing, platforms using MapReduce are also designed for
data centers, which are generally centralized. These platforms generally have a single node to maintain and coordinate
MapReduce tasks, leading to a single point of failure. All of these architectures have advantages and limitations, especially
in terms of time and processing mode. In our paper, we propose a decentralized architecture based on a content addressable
network peer-to-peer protocol using image properties associated with SHA-512 keys to secure the data. First, we evaluated
the existing Big Data technologies from the perspective of architecture to the use of a data storage model. Then, we presented
all the conceptual aspects of our architecture, and we ended with the evaluation of a symbolic version developed and deployed
in a local network. We implemented the MapReduce algorithm to evaluate the RGB architecture for data processing by the
peer node. Our study showed that a decentralized environment can be created for big data processing via the P2P protocol.

Keywords: CAN protocol, MapReduce, RGB architecture, Big data storage.

1. INTRODUCTION
Today, the world population is estimated to be 8 billion,
and more than 3.4 billion people are connected to the
internet according to "internet live stats" [1]. For the last
twenty years, the amount of generated data has been
increasing rapidly. We produce annually very important
data estimated at nearly 3 trillion (3.1018) bytes of data. It
is estimated that in 2016, 90% of the world’s data were
created in the previous two years. It is in this context that
the term “big data” appeared[2]. The term “big data” refers
to databases that are too large and complex to study with
traditional statistical methods and, by extension, to all the
new tools for analyzing these data. In this article, we focus
on the collection, storage and processing of massive
amounts of data in a P2P network context using the CAN
protocol.
Big data architectures such as lambda[3] or kappa use
datalakes or smart data for batch or streaming processing.
The MapReduce(4) computing model is also much better
suited to deployment in data centers with highly centralized
architectures.
Although omnipresent in our current events, massive
amounts of data and artificial intelligence are new
phenomena and are sometimes difficult to define[2]. Big
data is therefore a new discipline that brings together
techniques for managing and capturing data and tools and
platforms for storing, preprocessing, processing and
securing data. The fastest growing data type is unstructured
data. This type of data is characterized by human
information such as high-definition videos, movies,

photos, scientific simulations, financial transactions, phone
records, genomic datasets, seismic images, geospatial data,
maps, email, tweets, Facebook data, call center
conversations, cell phone calls, website clicks, documents,
sensor data, telemetry, medical records and images,
weather data records, log files and text. In the first part of
this article, we presented related work on big data
technologies from storage to processing. In the second part,
we recalled the operating principle of the CAN peer-to-
peer protocol. In the third part, we propose, implement and
evaluate an architecture for storage and big data processing
with MapReduce based on a CAN P2P network protocol
[7].

2. RELATED WORK
Big data storage
Big Data storage is generally based on an architecture that
allows calculations to be performed and large amounts of
data to be managed. In most cases, Big Data storage uses
low-cost hard disks [5]. In big data, the data are mostly
unstructured, which means that the storage is primarily
file- and object-based. Although a specific volume or
capacity is not formally defined, Big Data storage
generally refers to volumes that grow exponentially on the
terabyte or petabyte scale [6]. In addition, there are three
storage methods: file storage, block storage and object
storage. Object storage is the most widely used data storage
method in the Cloud. It is a nonhierarchical storage method
generally used for cloud storage[7]. It consists of storing
data in the form of units called objects. Each object consists

Lacine Kabre et al/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 15 (5), 2024, 31-39

31

ISSN:0975-9646

of the data, a unique identifier and metadata. The unique
identifier corresponds to the access path of the data. Block
storage consists of dividing a file into several blocks of data
and then storing them separately. This makes it possible to
distribute the blocks within the storage system in a more
efficient way. To retrieve a file, the system reassembles the
blocks of the file[7]. Most of these storage infrastructures
support Hadoop and NoSQL storage solutions. In file
storage, the data are stored in a file unit and placed in a
folder. It is a hierarchical storage method(8).

Big data storage models
The advent of big data(6) has also given birth to a series of
technologies in data storage, including Not Only SQL
(NoSQL)(9). NoSQL is a technology that was developed
to solve the problems presented by relational databases.
This technology (NoSQL) is implemented in different
ways and has different models. The common
characteristics of these models include efficient storage,
low operational costs, high availability, high concurrency,
minimal management, high scalability and low latency. In
2019, Khan, Samiya, and Liu conducted a qualitative study
to rank NoSQL solutions based on several criteria (10).
Rinkle Rani and other researchers(11) have provided a
detailed classification of NoSQL solutions by dividing
them into nine categories: columnar storage, document
storage, object databases, columnar storage, data structure
server, key-value storage, cached key-value storage,
ordered key-value storage and finally coherent key-value
storage. Cloud solutions can be classified into six
categories: entity-attribute and value data storage, Amazon
Platform columnar storage, key-value storage and
document storage with a distributed hash table(11).

Key-Value Storage Model
In this section, we are interested in the NoSQL database
type with a key-value storage, which implements a
schema-less storage policy. The structure is formally
defined for data storage. The data can be strings, numbers,
images, binaries, XML, JSON, HTML or video format, in
addition to many others. The stored values can be accessed
by using a key. The flexibility of the database manifests by
having the application completely control the value of the
data[12]. The main advantages of key-value storage are as
follows:
• The database does not force the application to structure

its data in a specific form. Therefore, the application is
free to model its data according to the requirements of
the use case.

• Access to the objects occurs simply through the key
assigned to the object. When using this database, it is
not necessary to perform operations such as union, join
and lock on the objects, which makes this data model
more efficient and highly effective.

• Most of the available key-value databases allow you to
adapt according to the demand.

• These databases are designed such that they are easy to
add and remove. In addition, these databases are better
equipped to handle network and hardware failures,
which greatly reduces downtime.

CAN Protocol
The content addressable network (CAN)[13 protocol is a
peer-to-peer network protocol in which distributed hash
tables (DHTs) are used. The CAN design described is
based on a virtual Cartesian coordinate space (Figure 2).
This coordinate space is completely logical and has no
relation to any physical coordinate system. The coordinate
space is shared dynamically among all the nodes in the
system so that each node has its own individual distinct
area in the space.

Figure 1: CAN coordinate space [14]

In the space managed by the CAN protocol, each portion
of the space can be adopted by a node, and each node
acquires information about its directly connected
neighbors. The routing in the CAN is performed from close
to close by passing through all the neighbors until arriving
at the target peer. To make a hop, the node receiving the
request communicates it to the neighbor whose coordinates
overlap on d-1 dimensions and are contiguous on the
remaining dimension. At each hop, one can change
coordinates in only one dimension[14]. This virtual
coordinate space is used to store (key, value) pairs. To store
a pair of information (key, Value), the key is determined in
a deterministic way on a point P in the coordinate space
using a uniform hash function. The corresponding pair
(key, value) is then stored on the node that owns the field.
To retrieve an entry corresponding to a key, any node can
apply the same deterministic hash function to map the
given key onto the point P and retrieve the corresponding
value. If the point is not owned by the requesting node or
its immediate neighbors, the request must be routed
through the CAN infrastructure until it reaches the node in
the area where the information peer is located. Efficient
routing is therefore a critical aspect of the CAN protocol.
The nodes in the CAN automatically organize themselves
into an overlay network that represents this virtual
coordinate space. A node learns and maintains the
addresses of nodes that contain coordinate areas adjacent
to its own area. This set of nearest neighbors in the
coordinate space serves as a coordinate routing table[14].
Our comparative study[15] performed using the simple
network layer in the PeerFactSim simulator showed a
discrepancy between the theoretical values and the values
from the simulation in terms of routing. The number of
hops was greater than the number estimated theoretically.
For a space divided into n equal areas, the average routing
path length is O(d/4) (n 1/d), with hops and individual
nodes maintaining 2d neighbors. These scaling results
mean that for a d-dimensional space, we can increase the
number of nodes (and thus the areas) without increasing the
state of the nodes[14]. However, the average path length
increases and can tend to O(n 1/d).

Lacine Kabre et al/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 15 (5), 2024, 31-39

32

Our comparative study[15] allowed us to analyze
initialized messages and correctly transmitted messages to
determine the average number of failed messages as a
function of time.
The study showed that the CAN protocol sends more
messages. However, this number decreases slightly with
time, and the number of failed messages is low. The
number of messages sent by Pastry increases with time, and
the number of failed messages increases proportionally
with the number of messages sent. Chord sends fewer
messages and does not fail. We concluded that the CAN
protocol has a longer routing time than the other protocols
but ensures that a very large number of messages are
successfully sent. This analysis oriented our choice to the
CAN protocol for the implementation of a self-managing
and scalable Big Data architecture.

3 PROBLEMATIC
Currently, the demand for storage solutions is increasing
due to the challenges of managing data for connected
devices, sharing data and customizing applications. There
has been a shift toward data-intensive applications,
especially because of the dependence of companies on
large amounts of data. However, these data are stored in
centralized data centers, which leads to multiple security
problems and problems with the architecture of the storage
environment. This argument supports the use of
decentralized storage solutions. This argument supports the
use of decentralized storage solutions. We also have cloud
storage solutions that have a centralized architecture and
are therefore easy to target for hackers. A decentralized
system is devoid of such problems since the nodes are
geographically distant and physically
independent. Therefore, a failure or attack at a point of
failure should only affect the affected node. The overall
system will remain unchanged, as the other nodes will
continue to operate as usual. In addition to ensuring that the
system is reliable and available, decentralization also
contributes to system scalability and performance.
However, massive data distribution in a decentralized
environment presents significant challenges, especially in
terms of access time when the nodes that compose it are
operating beyond their capacity. In this research, we
propose a decentralized architecture for scalable, highly
available and securely stored massive amounts of data. Its
particularity lies in the use of distributed hash tables
(DHTs) in the peer-to-peer protocol Content Adressable
Network (CAN) and the use of image properties coupled
with the SHA-512 key to secure the data.

4. CONTRIBUTION
Big Data architecture based on the CAN Protocol
The purpose of Big Data architecture is not only to store
data but also to make it available for other applications to
exploit and extract value from it. It must be possible to
perform customized analyses on these data in an easy way.
Therefore, the time needed to access the data is crucial. A
big data architecture is also an organization of a set of
technologies allowing us to collect and exploit the data.
These technologies define the environment of the

architecture. The main objective of this architecture
proposal is to ensure a minimum of security both at the
level of the data in transit and at the level of the various
components. In this paper, we propose a massive data
storage architecture based on the P2P CAN protocol to
improve access time and facilitate access to data. In this
architecture, we also add an additional layer of security by
using SHA-512 keys (512 bits) and image properties. This
architecture is called the RGB architecture. A comparative
study(15) on the P2P protocols CAN, Pastry, Chord and
Kademlia showed us that the CAN protocol is effective at
delivering messages compared to the other protocol. The
successful delivery of messages implies a rate of success
of storage requests compared to those of Chord and Pastry.
These results show that CAN could guarantee a very low
failure rate in the storage of big data objects.

RGB Architecture
As shown in the image (Figure 2), our model has one main
node and three secondary nodes. The main node is called
the bootstrap node, and the other three nodes are called
bootstrap secondary nodes. The initialization of the
architecture is performed by the BootStrap node, which
assigns a label and an address to each secondary node.
These labels are R, V, and B. Each label is associated with
a secondary node. The secondary nodes can in turn
initialize other nodes called data nodes. Our architecture is
a key-value-oriented Big Data storage solution that takes
advantage of the CAN protocol properties for node
management.

Fig 2:Big data Architecture based on CAN protocol

Fig 3: Basic UML diagram class for the RVB

Architecture

Lacine Kabre et al/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 15 (5), 2024, 31-39

33

Operating principle
4.3.1 The storage of Big Data objects
For the majority of the numerical applications consisting of
representative images on a screen, the trichromic basis of
additive synthesis RGB (red green blue) is used (screens
with cathode ray tubes or electroluminescent
diodes use these three primary colors to synthesize visible
colors by the man)[16]. Each color is then represented by a
triplet of real in £ 0; 1¤ (the triplet (1, 1, 1) is the white
color and (0, 0, 0) the black color). The quasitotality of the
formats of images makes it possible to manage images in
base RGB where each component is generally coded on 8
bits (24 bits for a pixel); thus, this system of coding will be
used to identify and make an object big data. Each big data
object in this architecture will have a Globally Unique
Identifier (GUID) based on a 512-bit SHA3 key. This
means that each object (file, unstructured data, etc.) is
associated with a 512-bit SHA key. For storage, the process
is described as follows:
• Step 1: First, generate a virtual unique point in the CAN
space via the CAN hash function. This virtual and unique
point will be associated with an object to be stored.
• Step 2: The encryption function SHA-512 is used to
encrypt the unique virtual points associated with the object
whose result is a 512-bit key also associated with the
object.
• Step 3: The generated 512-bit key is split into eight (08)
subkeys, each composed of 64 bits.
Let ∀x ∈ O ID = (X1,X2,X3,X4,X5,X6,X7,X8).
• Step 4: Each subkey of the previous step is broken down
into 24 bits and 40 bits. The first 24 bits define the color
(or value) of a virtual image pixel. The remaining 40 bits
are split into two parts of 20 bits each, and the X and Y
decimal coordinates of the image pixel are represented in
Euclidean space.
• Step 5: To determine the group of servers in which the
object will be stored, a calculation is carried out to find the
higher value of SUP(R,G,B) associated with each of the
subkeys to select the server on which to store the
information. For example, if we have SUPxi(R,V,B) = B,
storage will occur on server B. Xi is a subkey. We will have
a cluster of servers categorized into R, G, and B. Given that
the identifier of an object (the key SHA-512) is split into
eight (08) subkeys, we will have eight (08) redundancies in
all three clusters of the data server. This set of servers
constituted the Data Lake in our architecture.
• Step 6: The object identification information is added to
the DHT CAN. A pseudocode of this approach is presented
in Algorithm 1. This technique ensures that the data are
distributed to all nodes or clusters. Objects sent to the R or
G server cluster will be replicated to the data nodes (peer
of data). Algorithm 1 is a pseudo code for the procedure
described.

Algorithm 1: Pseudo-code
Initialize
Compute
Require: OID,CANDHT,File,Pv ,P,Statut
Ensure: SubKeys, STORE , REPLICATE, Pv,Target
Server

BEGIN OID ← hascode(x, y)
| objetKey ← SH A −512(O ID)
| tmp ← lengthe Of (OID)
| if (tmp = 64 octets)
| | then P ← 1 for P > 0 and P < 64
| | SubKeys ← 8 octets
| | Pv ← 5 octects
| | TargetServer ← SUP(3octets)
| | CANDHT ← (SubKey,FileName)
| | BootstrapNode ← STORE(File)
| | BootstrapSecondaryNode ← REPLICATE(File)
| | P ← P +1
| | STATUS ← 1
| else
| STATUS← 0
| end if
END

Node dynamics
In the RGB architecture, nodes are managed using the
CAN protocol. The primary bootstrap node initializes the
secondary nodes by assigning them logical addresses. The
secondary bootstrap nodes manage the data peers. It is
therefore responsible for adding or removing data peers. It
also has a routing table for the nodes for which it is
responsible and is informed of the status of the primary
node. The primary bootstrap node is used to perform
storage calculations and maintain the state of the secondary
nodes. When a secondary bootstrap node fails, storage is
performed on the secondary node with the closest value
(according to the SUP(R,G,B) calculation) to the failing
node. When the primary node fails, the first secondary
node becomes the primary bootstrap node until the true
primary node is restored. This dynamic architecture makes
it a self-managed, high-availability architecture. As the
storage mode is key-value oriented, it is possible to
parallelize or independently process the execution of
search requests on secondary nodes.

Figure 4: Data nodes in the RGB Architecture

Lacine Kabre et al/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 15 (5), 2024, 31-39

34

Securing and verifying the integrity of the stored data

Figure 5: Virtual space of keys

In our model, we have oriented the security at two levels.
The use of the SHA3 key applied to the unique identifier
generated by the CAN hash function allows for double
verification of the object identifier. Indeed, each unique
CAN identifier is associated with a set of image points
(pixels). Let Pu be the unique point of the CAN and SHA3
be the encryption function; the following formula verifies
the object identifier:

𝑆𝐻𝐴3(𝑃𝑢) =,(P′!)	
"

!#$

P ′ I represents the position of the image points (pixel).

In addition, protecting data through encryption,
tokenization and masking are complex and time-
consuming processes. This new architectural approach
directly integrates data-centric security through the use of
secureData Format Preserving Encryption (FPE), which
combines both encryption and data masking
technology[17]. This is the second level of security. This
technique can greatly simplify data confidentiality while
mitigating data leakage. This technology allows local
encryption of our Data Lake without significant impacts
from IT. SecureData protects sensitive data from the
moment they are acquired and ensures that theyare always
used, transferred and stored in a protected form[17].

Figure 6: Mode of operation of FPE technology

5 IMPLEMENTATION AND SIMULATION

In this research, we developed the entire module of the
proposed architecture based on the CAN protocol[14]. We
subsequently integrated this module into a functional CAN

P2P protocol version. It is a module programmed entirely
in JAVA language using APIs to manipulate files, SHA3
keys, hash tables, and networks. This implementation is
accessible and available on GitHub[18]. For the
simulation, we configured a local network with a speed of
100 Mbs. The client peers (or sources of data), which are
the client programs in our case, are executed on a computer
with a capacity of 4 Go Ram and a processor of 2 GHz. A
computer with a capacity of 32 GB of RAM (Ram), 2.6
GHz as the processor speed, and an SSD disk was used to
deploy the server program (primary bootstrap node). We
also configured three virtual computers serving as
secondary bootstrap nodes. The simulation was carried out
over several hours according to the chosen metrics. In this
simulation, we perform several storage operations
(LOOKUP) and search operations (STORE) by gradually
increasing the number of queries and data sources. The idea
is to determine the average time of the storage and search
operations and to evaluate the influence of the generation
of subkeys on the search for data in large volumes of data.
For the calculation of the means, we realize ten [10]
repetitive simulations with fixed parameters. To find the
mean, we apply the following operation:
Let x1,x2,x3. . ..,x10 the means obtained for each simulation
and Y the mean to be calculated. Y = (x1,x2,x3.,x10)/10

6 RESULTS ANALYSIS
Evaluation of the average number of Store requests
according to the size of the files

To evaluate the average time of STORE requests, we
decided to vary the size of the files. The tool fsutil of
Windows allowed us to create files of different sizes. The
size of the files varies from 1 Mo to 1024 Mo soit 1 Go.
The size of a file represents the size of the flow entering
the system, not the size of the data warehouse.
On the graph (Figure 8), we have curves that show the
evolution of the average times according to the size of the
files. For files from 1 to 32 Mb, the latency of the STORE
requests remains almost the same. However, the results
show that the storage time increases with the file size. For
files ranging from 64 MB to 1024 MB, the runtime
increases slightly with the number of STORE requests.
Indeed, for each file, 10 000 STORE requests are sent to
the server Primary BootStrap Node simultaneously by 10
data sources or peers. These averages were therefore
calculated progressively. For 1000 requests, then 2000
requests, then for 3000. This approach allows us to
evaluate the latency times according to the number of
requests. For a data file of 64 MB and 128 MB, the latency
times remain almost constant. There are 10.49 seconds and
31.17 seconds between 1000 and 10000 requests,
respectively. The average time for the 256 MB file is 50
seconds, whereas it is 75.23 seconds for a 512 MB file. We
have 147.44 seconds as the latency time for a 1024 MB file
(1 GB). The curve (Fig. 7) shows that there is a corollary
between the latency times and the file sizes. The latency of
STORE requests is a function of the file size.

Lacine Kabre et al/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 15 (5), 2024, 31-39

35

Figure 7: Latency according to the number of requests

Figure 8: Latency times and file sizes

Evaluation of failure and success rates
As with any computer process, there are often failures in
the execution of tasks. In this experiment, we evaluated the
failure rate TE for 10000 STORE requests sent. Figure 9
shows that the failure rate is low. The failure rate was
calculated with the following formula:

𝑇𝐸	 =
𝑄𝑒
𝑄𝑟	

Qe is the number of failed requests, and Qr is the number
of successful requests. In our experiment, failures occurred
from 8000 queries, for a rate of 0.06% or 99.94% success.
For 9000 requests, the failure rate is 1.9%, or the success
rate is 98.1%. For 10000 requests

The success rate was 97.67%, or the failure rate was 2.33%.
An analysis of our architecture allowed us to identify the
reason for these failures. This is due to the transfer of files.
The key generation and identifier assignment processes are
successfully executed. However, the possibility that a
failure could occur during the first 8000 requests cannot be
excluded. Moreover, the failure in our case does not
necessarily mean an absence of the file on all the storage
clusters because our approach implies eight redundancies,
all independent, during storage.

Figure 9: Failure and success rates

Evaluation of the average number of LOOKUP
requests
Currently, one of the crucial points in Big Data architecture
is latency in the search for information. Even when the
functions of MapReduce are applied to the data, their
efficiency depends on the time needed to access the data to
be treated. One of the objectives of our architecture is to
reduce the access time to the data by multiplying the access
keys to the data using the DHT CAN. This section shows
the evaluation of the results of our architecture. The search
operations are called LOOKUP. For this experiment, we
first performed 1000 STORE queries. These STORE
requests generate 1000*8 keys in the hash table that can
identify the 1000 stored objects. Then, we performed 10
LOOKUP experiments. Each LOOKUP experiment
(lookup 1, lookup 2, etc.) recorded in the table above
corresponds to 1000 LOOKUP requests sent to search for
the 1000 objects stored on all three clusters of servers
R,V,B. Additionally, for each lookup experiment (from 1
to 10), the data were not initialized. That is, the STORE
operation was not resumed. This implies that 10000
LOOKUP requests were sent in total during this
experiment. The curve in the figure (FIG. 8) shows the
evolution of the average time taken by the LOOKUP
requests (T ML). The smallest LOOKUP latency was
observed during the first lookup experiment. It is 2.9 ms
(6illisecond). The largest value is observed during the third
experiment. It is 5.7 ms. The average time decreases
progressively to reach the average value of 4.9 ms before
starting again at 5.5 ms during the last experiment. The
spike observed during the third
phase of the experiment could be explained by memory
leakage. The calculated median gives us an average
LOOKUP time of 5.5 ms. In the figure (FIG: 9), we have a
graphic representation of the success rate and the failure
rate. We notice a very low failure rate. The failure rate
varies between 0.1% and 0.2%, against a success rate that
varies between 99.98% and 100%.

Lacine Kabre et al/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 15 (5), 2024, 31-39

36

Figure 10: Evolution of the average time taken by the

LOOKUP requests

Figure 11: Rate of success of LOOKUP operations

5. MapReduce and the RGB Architecture
Popular platforms for MapReduce, such as Hadoop(19),
are extremely powerful but have certain inherent
limitations. These platforms are designed to be deployed in
a data center. Their architecture relies on several nodes
with specific roles to coordinate work, such as the
NameNode and JobTracker. These nodes perform
scheduling and distribution tasks and contribute to the fault
tolerance of the network as a whole; however, in doing so,
they themselves become single points of failure. Our
MapReduce implementation on the RGB Architecture
provides a dynamic framework for MapReduce and is
capable of running on any arbitrarily distributed
configuration. Our framework exploits the characteristics
of CAN[14] distributed hash tables coupled with our color-
coded computing approach to manage distributed file
storage, fault tolerance and data retrieval.
Our approach to implementing MapReduce has been to
develop modules as extensions to the CAN protocol, taking
advantage of existing functionality. By treating each task
as a data object, we can distribute them in the same way as
files, relying on the protocol to route them and ensure their
robustness.

Figure 12: Basic architecture of nodes in the RGB

architecture

To evaluate the performance of our MapReduce
implementation, we chose to deploy it on a local network.
This implementation was entirely realized in Java using the
java.net, File, and Stream API and regular expressions. Our
implementation implements all the routing and
maintenance procedures defined by the CAN protocol,
which is used to implement the RGB architecture. The
machines used were configured on the Windows file
system. Our implementation is therefore able to easily
manipulate (create, read and write) files. To start the
experiment, MapReduce commands and job descriptions
are sent to the primary bootstrap node, which performs a
file search operation before the commands are transferred
to one of the secondary nodes. We tested our computing
system by running a word frequency count. The tasks were
tested in several configurations; we varied the initial
network size and the size of the jobs. Each map job is
defined by the number of nodes that must execute it, and a
result that constitutes an input for the "Shuffle" process is
produced. Reducing these results involves adding up the
respective fields. Our experiment counts the occurrence of
each word in a file stored on the RGB architecture.

Results
In the test context, we evaluated the latency of MapReduce
requests. We chose a file with a fixed size of 120 MB. This
file contains a set of words. The Map and Reduce tasks
consist of counting certain keywords that we specified as
arguments at the start of the program launch. First, we
carried out an initial test to ensure that all the steps would
run successfully. To do this, we configured the RGB
architecture and the nodes on a single machine with 32 GB
RAM capacity and an SSD disk. The addresses of the
computing peers and secondary nodes are managed using
.txt files. We ran the same job several times, varying the
number of nodes from 1 to 10.

Lacine Kabre et al/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 15 (5), 2024, 31-39

37

Figure 13: Job execution time as a function of nodes

Figure 10 shows the evolution of the calculation times for
the same case. We obtained an average value of 1214
milliseconds, i.e., approximately 1.3 seconds for one node
and an average value of 361 milliseconds for 10 nodes. The
greater the number of nodes is, the longer the execution
time. This implies that the processes of dividing files into
blocks, distributing these blocks, counting and sorting are
successfully completed.

Figure 14: Processing time as a function of the number

of computing nodes

Fig. 14 shows the results of the experimenting with
MapReduce on the RGB architecture. For the 100 jobs, we
have 429.4 seconds for 1 node versus 22.10 seconds for 20
nodes. For 500 jobs, we have 4322 seconds for 1 node
versus 1400 seconds for 20 nodes. For this experiment, we
observe a progressive decrease in processing time, as
shown in Figure 14. We can therefore deduce an
acceleration factor by calculating (T1/Tn). This yields
19.41 for 100 jobs and 3.08 for 500 jobs. Note that the
greater the number of jobs is, the longer the computation

time, but the shorter the computation time if several nodes
are assigned to the jobs.
The graphs (Fig. 15) show the evolution of computation
times for jobs between 1 and 20 compute nodes. This
estimate is based on a proportional calculation and the data
collected in the previous analyses.
The curves all have the same shape, showing an
improvement in calculation time despite the large number
of jobs submitted.

Figure 15: Estimating execution time as a function of

nodes

Figure 16 shows a theoretical estimate of the execution
speed as a function of the number of nodes. Based on 500
jobs submitted, for 100 nodes, we have an execution speed
66.42 times the execution speed of a node loaded with the
same number of jobs. At 10000 nodes, the speed can reach
97.92 times the speed of a loaded node.

Figure 16: Job execution speed by node

In the following table, we provide a comparison of certain
architectures, including the RGB architecture, based on the
study of [20].

Features Lamda Zeta kappa RVB

Data type Reference data
or metadata transactional data transactional data Reference data or

metadata

Frequency of Data Feeds in real-
time Feeds on demand Feeds on demand Feeds on demand

Content Format
structured,

Semistructured,
unstructured

structured,
Semistructured,

unstructured

structured, Semistructured,
unstructured

structured,Semi,
unstructured

Data Source Man made, by
computers web, Internal source Man made, computers, web Man made Internal source

Figure 17: Comparison table

Lacine Kabre et al/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 15 (5), 2024, 31-39

38

7. CONCLUSION
Today, in the world of big data storage, centralized storage
is becoming obsolete in favor of decentralized storage.
Moreover, decentralized storage with blockchain has been
identified as the future of Big Data technology. In this
paper, we propose a big data architecture called the RGB
architecture based on the P2P CAN network protocol
whose storage is an oriented key value. CAN is
traditionally a P2P protocol for file distribution and
sharing. We implemented a fully functional version of the
RGB architecture and performed detailed experiments to
test its performance. These experiments have shown that
our architecture is robust and dynamic and is able to
support the storage of large volumes of data. The use of the
CAN protocol as middleware allows us to exploit its
efficiency for message sending and data distribution. The
efficiency of the CAN protocol helps to improve the data
storage processes and to guarantee the scalability of a
dataLake. This architectural approach allows us to
construct a secure collection and storage system with
dynamic processing nodes. Thus, the great advantage of
this approach is that it can guarantee low data loss during a
collection operation because these secondary nodes can
replace the central node without taking too much time. We
also implemented a fully functional version of MapReduce
on the RGB architecture and carried out detailed
experiments to test its performance. These experiments
confirmed that the architecture is robust and efficient. P2P
network protocols are traditionally known for file sharing.
We have demonstrated that this approach can also be used
to construct a data pipeline and perform distributed
computations on large volumes of data.

Declarations
Ethics approval and consent to participate-Not applicable
Consent for publication-All the authors have given their
consent for the publication of the manuscript.
Availability of data and materials-All the data sets on
which the conclusions of the manuscript rely are available
upon request.
Competing interests-The authors declare no conflicts of
interest. Funding This study was not funded.
Author contributions-The authors declare that this study
received no contributions from other authors.

Acknowledgments
The authors would like to thank all the teachers of the
Training and Research Unit of Joseph Ki-Zerbo University.
I would also like to thank the Laboratory of Mathematical
and Computer Analysis (LAMI) for allowing me to
perform the research.

BIBLIOGRAPHY
1. Number of Internet Users (2016) - Internet Live Stats [Internet].

[cited 2024 Jun 24]. Available from:
https://www.internetlivestats.com/internet-users/

2. Labrinidis A, Jagadish HV. Challenges and opportunities with
big data. Proc VLDB Endow. 2012 août;5(12):2032–3.

3. PoweredBy - HADOOP2 - Apache Software Foundation
[Internet]. [cited 2023 Jun 7]. Available from:
https://cwiki.apache.org/confluence/display/HADOOP2/Powere
dBy

4. Lämmel R. Google’s MapReduce programming model —
Revisited. Science of Computer Programming. 2008
Jan;70(1):1–30.

5. Optical storage arrays: A perspective for future big data storage -
RMIT University [Internet]. [cited 2024 Jul

6. Available from:
https://researchrepository.rmit.edu.au/esploro/outputs/journalAr
ticle/Optical-storage-arrays-A-perspective-
for/9921862898101341

7. De Mauro A. What is big data? A consensual definition and a
review of key research topics. 2014.

8. Stockage objet : la principale méthode de stockage de données
Cloud [Internet]. [cited 2024 Jul 8]. Available from:
https://www.lebigdata.fr/stockage-objet-la-principale-methode-
de-stockage-de-donnees-cloud

9. Factor M, Meth K, Naor D, Rodeh O, Satran J. Object storage:
The future building block for storage systems. In 2005. p. 119–
23.

10. Bathla G, Rani R, Aggarwal H. Comparative study of NoSQL
databases for big data storage. International Journal of
Engineering & Technology. 2018 Mar 11;7(2.6):83–7.

11. Khan: Storage solutions for big data systems: A qualitati... -
Google Scholar [Internet]. [cited 2024 Jul 10]. Available from:
https://scholar.google.com/scholar_lookup?arxiv_id=1904.1149
8

12. Saxenna M, Singh V. NoSQL Databases- Analysis, Techniques,
and Classification. Journal of Advanced Database Management
& Systems (EISSN: 2393-8730). 2014 Jul 1;1:1–11.

13. Flesca S, Greco S, Masciari E, Saccà D. A Comprehensive Guide
Through the Italian Database Research Over the Last 25 Years.
Vol. 31. 2018.

14. Ratnasamy S, Francis P, Handley M, Shenker S, Karp R. A
Scalable Content-Addressable Network

15. Ratnasamy S, Francis P, Handley M, Shenker S, Karp R. A
Scalable Content-Addressable Network.

16. KABRE L, Tiendrebeogo T. Comparative Study of can, Pastry,
Kademlia and Chord DHTS. International Journal of Peer to Peer
Networks. 2021 Aug 31;12:1–22.

17. Fofi D, Mouaddib EM, Salvi J. Décodage d’un motif structurant
codé par la couleur.

18. Bellare M, Ristenpart T, Rogaway P, Stegers T. Format-
Preserving Encryption. 2009. 295 p.

19. KABREGIT/BigDataStorageBasedOnCan: Data storage based
on CAN DHT [Internet]. [cited 2024 Jul 18]. Available from:
https://github.com/KABREGIT/BigDataStorageBasedOnCAN

20. Rajeh W. Hadoop Distributed File System Security Challenges
and Examination of Unauthorized Access Issue. Journal of
Information Security. 2022 Feb 16;13(2):23–42.

21. KoffiKalipe G, Behera R. Big Data Architectures: A Detailed and
Application Oriented Analysis. International Journal of
Innovative Technology and Exploring Engineering. 2019 Jul
30;8:2182–90.

Lacine Kabre et al/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 15 (5), 2024, 31-39

39

